[Worldkings] Top 50 Universities with Innovative Research (P. 46) University of Massachusetts Amherst (USA): Inventing a revolutionary "electronic nose" that can "smell" diseases


(Worldkings.org) The researchers produced a nanowire 10,000 times thinner than a human hair that can be cheaply grown by common bacteria and tuned to "smell."

In 2017, researchers developed an electronic nose that could smell diseases. Now, scientists at the University of Massachusetts Amherst have produced a nanowire 10,000 times thinner than a human hair that can be cheaply grown by common bacteria and tuned to “smell” a vast array of chemical tracers. It can even detect smells given off by people afflicted with a wide range of medical conditions, such as asthma and kidney disease.


These specially tuned wires can be combined onto tiny, wearable sensors to become an unprecedented tool for monitoring potential health complications. 

The innovation was spearheaded by the new study’s senior authors Derek Lovley, Distinguished Professor of Microbiology at UMass Amherst, and Jun Yao, professor of electrical and computer engineering in the College of Engineering at UMass Amherst. It was based on the functioning of the human nose.

“Human noses have hundreds of receptors, each sensitive to one specific molecule,” said Yao.

“They are vastly more sensitive and efficient than any mechanical or chemical device that could be engineered. We wondered how we could leverage the biological design itself rather than rely on a synthetic material.”  

To do this, they used a bacterium known as Geobacter sulfurreducens which has the natural ability to grow tiny, electrically conductive nanowires. They then proceeded to genetically edit it. 

“What we’ve done,” says Lovley, “is to take the ‘nanowire gene’—called pilin—out of G. sulfurreducens and splice it into the DNA of Escherichia coli, one of the most widespread bacteria in the world.” 

Lovley, Yao, and the team then further modified it to include a specific peptide known as DLESFL, which is extremely sensitive to ammonia—a chemical often present in the breath of those with kidney disease.


“Genetically modifying the nanowires made them 100 times more responsive to ammonia than they were originally,” said Yassir Lekbach, the paper’s co-lead author and a postdoctoral researcher in microbiology at UMass Amherst.

“The microbe-produced nanowires function much better as sensors than previously described sensors fabricated with traditional silicon or metal nanowires.” 

Now, the new sensors have many applications beyond the detection of ammonia and kidney disease. 

Toshiyuki Ueki, the paper’s other co-lead author and research professor in microbiology at UMass Amherst, said that “it’s possible to design unique peptides, each of which specifically binds a molecule of interest.”

“So, as more tracer molecules emitted by the body and which are specific to a particular disease are identified, we can make sensors that incorporate hundreds of different chemical-sniffing nanowires to monitor all sorts of health conditions,” concluded Ueki in the press statement.

The new innovations are detailed in the journal Biosensors and Bioelectrics.


According to interestingengineering.com

Kyna ( Collect) - WORLDKINGS (Source of photos: Internet)


towerWorldKings journeys
CAMBODIA BOOK OF RECORDSWorld Records University